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Abstract— The multilayer surface integral equations (SIEs) for
electromagnetic scattering by infinitely long magnetodielectric
cylinders with an arbitrary number of layers are derived and
solved by the spectral integral method (SIM). Singularity sub-
traction for the 2-D Green’s function is used to enhance the
computation accuracy and achieve exponential convergence. The
final matrix equation after discretization is formed in the Fourier
spectral domain rather than the spatial domain, which greatly
expedites the SIM solution by accelerating the convolution via
the fast fourier transform (FFT) algorithm. A recursive method
is proposed to solve the spectral integral equations instead of
using an iterative method to lower the computation complexity.
Numerical examples for ordinary multilayer cylinders and invis-
ibility cloak cylinders are presented to validate the SIM results
by comparing the total fields, scattered fields, and radar cross
section (RCS) to analytical solutions or finite-element simulations.
They verify that the recursive solution has a complexity of
O(M N log N) for an M-layer cylinder with N discrete points
on each interface. Meanwhile, the SIM outperforms the ana-
lytical method because only the 0th-order and 1st-order special
functions (Bessel functions and Hankel functions) are used in the
SIM but higher-order functions are necessary for the analytical
method to maintain the accuracy.

Index Terms— Layered invisibility cloak, multilayer cylinder
scattering, recursive solution, spectral integral method (SIM),
surface integral equations (SIEs).

I. INTRODUCTION

IN the past three decades, the electromagnetic (EM)
scattering by cylinders has been widely studied. The
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research is not only for academic purpose but also well
applied in microwave engineering such as the design of
superstrate-loaded conformal microstrip antennas [1] and
investigation of the absorption characteristics of EM radiation
for multilayered cylindrical models of human torsos [2]. Both
analytical and numerical solutions have been developed for the
EM scattering by multilayer cylinders.

The most straightforward analytical solution for EM scatter-
ing by dielectric or perfect electric conductor (PEC) cylinders
is obtained by expanding the wavefield in terms of cylindrical
eigenfunctions, i.e., Bessel and Hankel functions of various
orders, and solving the expansion coefficients by matching the
boundary conditions [3]. Another popular analytical method
is to expand the wavefield or Green’s function by the vector
wave functions [4]. This has been successfully used to solve
the EM scattering by multilayer chiral cylinders [5] and ellip-
tical cylinders [6]. However, analytical methods suffer from
the extreme arguments or high orders and the convergence
problem when cylindrical functions are evaluated for electri-
cally large objects. Therefore, a pseudoanalytical method is
proposed to overcome these problems by using different sets
of range-conditioned, modified cylindrical functions [7].

Besides the aforementioned analytical solutions, numeri-
cal computation is another important method to solve EM
scattering by cylinders. The easiest way is to formulate the
EM scattering by cylinders via integral equations and solve
them by the method of moments (MoMs) [8], [9] which can
be further accelerated by the spectral integral method (SIM)
[10], [11]. The SIM is efficient to compute EM scattering
with a low spatial sampling density (SD) for dielectric and
PEC objects with closed boundaries buried in a homogeneous
background or a layered medium [12], smooth multilayered
bodies of revolution (BoRs) [13], and a lossy circularly layered
dielectric cylinder illuminated by a beam field [14]. Other
techniques such as the method of auxiliary sources (MASs)
developed by Zaridze et al. [15] have been successfully
applied to scattering problems for dielectric circular cylinders
and have been extended to layered dielectric cylinders by
Tsitsas et al. [16].

The surface integral equation (SIE) is a numerical method
commonly used to solve PEC [17] or dielectric cylinder
scattering [18] problems. The importance of SIE in the
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solution, both theoretical and practical, of certain types of
boundary value problems (BVPs) is universally recognized
since 1960s. The equivalence of the SIE and initial BVP
and the uniqueness and existence of the solution to the
SIE with radiation boundary condition were demonstrated by
Leis [19]. Then the application of SIE to BVP for Laplace’s
equation and for the Helmholtz equation is discussed by
Burton and Miller [20]. Rao et al. [21] and Chew [22]
developed this theory more widely for EM scattering, and
Hu [23], [24] and Zaman [25] applied it to acoustic wave
scattering. In acoustics, Schuster [26] adopted the SIE method
to solve the line source response of concentric cylinders filled
with acoustic materials. Zhu et al. [18] solve EM and acoustic
scattering by penetrable cylinders based on [26] but using the
SIM. However, this article was for a single cylinder and the
permeability was assumed constant.

In this article, we extend our previous direct SIM [18]
to arbitrary multilayer cylinders. Meanwhile, the magnetic
property variation of the layered scatterers is considered,
i.e., the layered cylinders can be arbitrary magnetodielectric
media. Therefore, SIEs are formulated for EM scattering by
multilayer concentric magnetodielectric cylinders. The SIM
proposed in [10] is used to solve the SIEs in the spectral
domain. The singularity in the 2-D Green’s function is handled
by a truncated Fourier series. In addition, a fast recursive
algorithm based on the boundary continuity of tangential
electric and magnetic fields is proposed to solve the SIEs. It is
demonstrated that as a direct (noniterative) method, the SIM
can provide an exponentially accurate result and guarantee a
less than 0.1‰ error with an SD of only three points per
wavelength (PPW). Four numerical examples with 4 layers
and 20 layers are presented to validate the applicability of the
proposed SIM for arbitrary number of layers, thickness, and
electrical sizes. Meanwhile, the computation accuracy with
and without the singularity subtraction of Green’s functions
is compared. The effects of the SD (in terms of PPW values)
on the SIM solutions are shown to verify the rapid convergence
of the SIM. Furthermore, the SIM is used to solve the
wavefield for a layered invisibility cloak and the scattering
width (SW) with or without the cloak is compared. Finally,
the computation parameters are listed for arbitrary multilayer
magnetodielectric cylinders.

This article is organized as follows. In Section II, the SIEs
are derived for multilayer magnetodielectric cylinders, and the
singularity subtraction of Green’s functions is discussed. The
SIEs are discretized and the matrix equations are formulated
in the Fourier spectral domain. The SIM is applied to SIEs to
obtain recursive solutions. In Section III, numerical examples
are given to validate our method. Conclusions and discussions
are presented in Section IV.

II. SIE FORMULATION FOR MULTILAYER CONCENTRIC

MAGNETODIELECTRIC CYLINDERS

In this section, we will derive the SIEs for EM scattering
from multilayer magnetodielectric cylinders. The number of
layers is arbitrary, and both the permittivity and permeability in
different layers can be different. In this article, we consider the

Fig. 1. (a) Infinitely long multilayer magnetodielectric concentric cylinder
placed along the z-axis, with the incident plane wave Einc propagating parallel
to the cross section plane (xy) of the cylinder. (b) xy plane sectional view of
the multilayer cylinder.

transverse magnetic (TM) wave, i.e., TM-polarized incident
EM wave. The transverse electric (TE) polarization solution
can be obtained by duality.

Consider an infinitely long multilayer magnetodielectric
concentric cylinder with the axis parallel to the z direction
in the Cartesian coordinate system, as shown in Fig. 1(a). The
incident plane wave is ẑ polarized. As shown in [3], if the
wave is propagating in the x direction, the incident wave field
Einc can be expanded as

Einc = ẑe− jk1 x = ẑe− jk1r cos θ

= ẑ
n=∞∑

n=−∞
j−n Jn(k1r)e jnθ (1)

where Jn is the first kind Bessel function, and k1 is the
wavenumber of the background medium in which the cylinder
is located.

A. Formulation of SIEs

For clarity, the xy plane sectional view of the
magnetodielectric concentric cylinder is illustrated
in Fig. 1(b). The cylinder is composed of different EM
materials. The relative permeability and permittivity are
(μr,1, εr,1), . . . , (μr,M+1, εr,M+1) from outside to inside. The
radius of each layer from outside to inside is rm(1 � m � M),
and the corresponding wavenumber of each layer is
km = k0(μr,mεr,m)1/2, where k0 is the wavenumber in free
space. Sm(1 � m � M) is the interface between layers m and
m + 1.

According to the Stratton-Chu formula [27], the scattered
electric field can be written as

Esct

=
∮

{ jωμ[n̂′×H(t ′)]g(r, r′)+[n̂′×E(t ′)]×∇′g(r, r′)}dt ′

= μr

∮
jk0J̃(t ′)g(r, r′)dt ′−n̂′×

∮
∂g(r, r′)

∂n′ t̂(t ′)Ez(t
′)dt ′

= ẑ
∮

[μr jk0g(r, r′) J̃z(t
′) − ∂g(r, r′)

∂n′ Ez(t
′)]dt ′ (2)

where the unknown current density has been parameterized
with the arc length t in the tangential t̂ direction, J̃ = η0n̂ ×
H = ẑη0 Ht = ẑ J̃z on the surface S radiating in the background
medium are used to produce the scattered fields inside the
object, n̂ is the outward normal direction, and g(r, r′) is the
2-D scalar Green’s function.
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In virtue of (2) and the surface equivalent principle [3],
we can obtain the multilayer SIEs in which there are totally
M sets of equations as (3), as shown at the bottom of this
page, with 1 � m � M . I is the identity operator, and the
specific expressions of the operators L, K are as follows [28]:

Lτ [ J̃s,m] = − jk0

∫
Sm

gτ (r, r′) J̃z,m(t ′)dt ′, τ = m, m + 1

(4a)

Kτ [Ez,m] =
∫

Sm

–
∂gτ (r, r′)

∂n′ Ez,m(t ′)dt ′, τ = m, m + 1 (4b)

where
∫
– denotes the Cauchy principal-value integral. One

should note that S0 and SM+1 do not exist, and thus, the cor-
responding terms in (3) have no contribution to the multilayer
SIEs. gm is the 2-D scalar Green’s function in the mth layer,
which corresponds to the solution of the following Helmholtz
equation:

∇2gm + k2gm = −δ(r − r′) (5)

subject to the Sommerfeld radiation boundary condition.
In Green’s function gm is expressed as

gm = gm(km Rpq)

= gm
(
km

∣∣rp − r′
q

∣∣) = − j

4
H (2)

0

(
km

∣∣rp − r′
q

∣∣) (6)

where rp is the field point locating on the pth interface, and
r′

q is the equivalent source point locating on the qth interface.
Rpq is the distance between rp and r′

q . H (2)
0 is the 0th-

order Hankel function of the second kind. If we represent rp

in the Cartesian system with (x p, yp) and r′
q with (x ′

q, y ′
q),

we have x p = rp cos θ , yp = rp sin θ , x ′
q = rq cos θ ′, and

y ′
q = rq sin θ ′, where 1 � p, q � M and θ, θ ′ ∈ [0, 2π),

as shown in Fig. 1(a). rp and rq are the radius of the pth and
the qth interface, respectively.

By following the above definitions, we can easily obtain:

Rpq =
⎧⎨
⎩

2rp

∣∣∣sin
(

θ−θ ′
2

)∣∣∣, p = q√
r2

p + r2
q − 2rprq cos(θ − θ ′), |p − q| = 1.

(7)

Hence, gm in (6) can be readily evaluated.
The normal derivative of Green’s function in the cylindrical

coordinate system is

∂gm

∂n′ (rp, r′
q) = jkm

4
H (2)

1 (km Rpq) · Rpq · n̂′

Rpq
(8)

where

Rpq · n̂′

Rpq
=

⎧⎪⎪⎨
⎪⎪⎩

∣∣∣∣sin

(
θ − θ ′

2

)∣∣∣∣, p = q

R2
pq + r2

q − r2
p

2Rpqrq
, p �= q

(9)

and H (2)
1 is the first-order Hankel function of the second kind.

B. Singularity Subtraction

In the SIEs (3), when the field point rp and equivalent
source point r′

q overlap, both gm and ∂gm/∂n will show
singularities.

When p = q , we have ξ ≡ km Rpq = 2rpkm| sin δθ
2 | where

δθ = θ − θ ′, then we separate integral kernels in (4) into their
smooth parts and singular parts as [18], [24]

H (2)
0 (ξ) = H̄ (2)

0 (ξ) − 2 j

π
J0(ξ) ln |2 sin

δθ

2
| (10a)

∂gm

∂n′ = [J1(ξ) − jY1(ξ)] jkmn̂′ · Rpq

4Rpq

=
[

−1

ξ
+ ln

∣∣∣∣ξ2
∣∣∣∣J1(ξ) +

∞∑
s=0

a2s+1ξ
2s+1

]

× −km

2π

∣∣∣∣sin
δθ

2

∣∣∣∣
= ḡ′

m(ξ) + ln

∣∣∣∣2 sin
δθ

2

∣∣∣∣J1(ξ)
km

2π

∣∣∣∣sin
δθ

2

∣∣∣∣ .(10b)

Note that at θ = θ ′, the second term in the right side of (10a)
is singular, while that in (10b) is finite but has a derivative
discontinuity because of the presence of | sin δθ

2 |.
We expand ln |2 sin( θ−θ ′

2 )| by Fourier series [23], [24]

ln

∣∣∣∣2 sin
θ − θ ′

2

∣∣∣∣ = −
∞∑

n=1

cos n(θ − θ ′)
n

=
+∞∑

n=−∞
ane jn(θ−θ ′)

(11)

in which a0 = 0 and an = −1/(2|n|) for n �= 0. We empir-
ically truncate enough terms to 2N terms for ln |2 sin( θ−θ ′

2 )|
to evaluate the singularity analytically as in [18].

C. Discretization

Before SIEs are solved, discretization is needed. By refer-
ring to the details in [24], we discretize all interface layers
synchronously. We divide the whole circumference into N
equal arc elements as θn = �θ(n − 1), where n ∈ [1, N]

[
0 0 μr,m Lm Km − 1

2 I −μr,m Lm −Km

μr,m+1 Lm+1 Km+1 −μr,m+1 Lm+1 −Km+1 − 1
2 I 0 0

]
⎡
⎢⎢⎢⎢⎢⎢⎣

J̃s,m+1

Ez,m+1

J̃s,m

Ez,m

J̃s,m−1

Ez,m−1

⎤
⎥⎥⎥⎥⎥⎥⎦

=
[−Einc

m
Einc

m+1

]
(3)
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and �θ = (2π/N). Then, when r ∈ Sm , the SIEs in (3) can
be compactly rewritten as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−Tm,m(θn) + Tm,m−1(θn)

= Ez,m(θn)

2
− Einc

z,m(θn)

−Tm+1,m+1(θn) + Tm+1,m(θn)

= Ez,m(θn)

2
+ Einc

z,m+1(θn)

(12)

for n = 1, . . . , N , where

Tm,q(θn) =
N∑

n′=1

ιm
(
Rpq, θn, θ

′
n′
)
J̃z,q

(
θ ′

n′
)

−
N∑

n′=1

κm
(
Rpq, θn, θ

′
n′
)
Ez,q

(
θ ′

n′
)

(13a)

ιm
(
Rpq, θn, θ

′
n′
) = μr,m jk0rq�θgm

(
km Rpq

(
θn, θ

′
n′
))

(13b)

κm
(
Rpq, θn, θ

′
n′
) = rq�θ

∂gm
(
km Rpq

(
θn, θ

′
n′
))

∂n′ (13c)

where 1 � m � M + 1 is the mth layer, the subscript p is the
field interface index, and subscript q refers to the qth interface
in which the equivalent source points are located.

Equation (12) consists of 2N M coupled equations. The
brute-force MoM solution of (12) is expensive with O(M3 N3)
CPU time and O(M2 N2) memory. An iterative solution by
using the biconjugate-gradient (BCG) method [12] can reduce
the CPU time to O(K M2 N2), where K is the number of iter-
ations. Here, we seek a direct solution with higher efficiency.

D. Fast Direct SIM With Recursive Solutions

In this article, we propose a recursive algorithm to solve the
discretized SIEs to outperform even the iterative solution. Note
that the interactions between the Green’s function gm or its
normal derivative and Ez as well as J̃z in (13) are convolutions.
Fast fourier transform (FFT) can be used to accelerate such
convolutions. Therefore, we denote the Fourier transform of
μr,m jk0rq�θgm, J̃z,q , rq�θ(∂gm/∂n)− 1/2, Ez,q , and E inc

z,q as
Lm

p,q , Jz,q , Km
p,q , Ez,q , and E inc

z,q , respectively, where Lm
p,q ,Km

p,q
are the Fourier transform values in the mth layer. In this way,
(12) is converted to N independent matrix equations which are
completely uncoupled in the Fourier domain. The impedance
matrix in each equation has the dimensions of 2M×2M . These
equations in the spectral domain are

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−Lm
m−1,mJz,m + [Km

m−1,m + 1
2 ]Ez,m + Lm

m−1,m−1Jz,m−1

− [Km
m−1,m−1 + 1

2 ]Ez,m−1 = Ez,m

2 − E inc
z,m

−Lm+1
m+1,m+1Jz,m+1 + [Km+1

m+1,m+1 + 1
2 ]Ez,m+1

+ Lm+1
m+1,mJz,m − [Km+1

m+1,m + 1
2 ]Ez,m = Ez,m

2 − E inc
z,m+1

(14)

where all Jz terms are put in the left sides of the equations.
The first one (m = 1) and the last one (m = M) are two single

equations, and there are totally M − 1 pairs like

Jz,1 = (K1
1,1 + 1/2)Ez,1 + E inc

z,1

L1
1,1

(15a)⎧⎨
⎩Jz,α = �

(1)
α,βEz,β+�

(1)
β,βEz,α+(Lβ

α,β−Lβ
β,β )E inc

z,β

�β

Jz,β = �(2)
α,αEz,β+�

(2)
β,αEz,α+(Lβ

α,α−Lβ
β,α)E inc

z,β

�β

(15b)

Jz,M = (KM+1
M,M + 1/2)Ez,M − E inc

z,M+1

LM+1
M,M

(15c)

where 1 � α < M, β = α + 1 are positive integers. The
expressions of �(1)

α,α, �
(1)
α,β , �

(2)
β,α, �

(2)
β,β , �β are given as

�(1)
α,β = Lβ

α,β (Kβ
β,β + 1/2) − Lβ

β,βKβ
α,β (16a)

�
(1)
β,β = Lβ

β,β (Kβ
α,α + 1/2) − Lβ

α,β (Kβ
β,α + 1) (16b)

�(2)
α,α = Lβ

α,α(Kβ
β,β + 1/2) − Lβ

β,αKβ
α,β (16c)

�
(2)
β,α = Lβ

β,α(Kβ
α,α + 1/2) − Lβ

α,α(Kβ
β,α + 1) (16d)

�β = Lβ
α,αLβ

β,β − Lβ
α,βLβ

β,α (16e)

In particular, when α = M or �M+1 = LM+1
M,M .

We then eliminate Jz,1 in the first and the second equations
in (15) and obtain the first relationship z1 between Ez,1 and
Ez,2 in (17). We repeat this process, e.g., eliminate Jz,2 in the
third and the fourth equations in (15) and obtain the second
relationship z2 for Ez,1, Ez,2 and Ez,3. Totally, we can acquire
M sets of equations

zγ (Ez,γ−1, Ez,γ , Ez,γ+1) ≡ aγEz,γ−1 + bγ Ez,γ + cγ Ez,γ+1

−dγ = 0, γ = 1, · · · , M (17)

where a1 = 0 and cM = 0. The other aγ , bγ , cγ and dγ are
given below

aγ = �γ+1�
(2)
γ,γ−1 (18a)

bγ = �γ+1�(2)
γ−1,γ−1 − �γ �(1)

γ+1,γ+1 (18b)

cγ = −�γ �
(1)
γ,γ+1 (18c)

dγ = �γ (Lγ+1
γ,γ+1 − Lγ+1

γ+1,γ+1)E inc
z,γ+1 − �γ+1

(Lγ
γ−1,γ−1 − Lγ

γ,γ−1)E inc
z,γ (18d)

By substituting z1 into z2, we obtain the relationship
between Ez,2 and Ez,3 as y2(Ez,2, Ez,3) = 0, and by substituting
y2 into z3, we obtain the relationship between Ez,3 and Ez,4

as y3(Ez,3, Ez,4) = 0. In the same way, we can substitute
zM into zM−1 and obtain yM−1(Ez,M−2, Ez,M−1) = 0. This
process begins at the two sides of the equation system (17)
and finally comes to only one equation and one unknown.
When the final single equation is solved, other unknowns can
be acquired recursively. Also, the mathematical derivations
for such a recursive process are shown in Appendix A. This
recursive algorithm is a direct noniterative solution and has
computation cost as O(N M) in total, which is obviously lower
than the BCG method with the complexity of O(N K (2M)2)
where K is the iteration number. After the unknown vector
is solved, the inverse FFT with computational complexity of
O(N log N) is applied to compute Ez in all interface layers.
Thus, the computation complexity is O(M N log N) for the
CPU time and O(M N) for the memory.
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III. NUMERICAL RESULTS

In this section, we present five numerical examples to
validate the proposed SIM. The reference result is either
from the analytical solution solved from (1) [3] or from the
finite element method (FEM) simulation by the commercial
software COMSOL. It is assumed that the incident plane wave
is propagating along the positive x̂ direction.

In order to quantitatively evaluate the computation accuracy
of SIEs by the SIM, we define the relative error as

Err =
∥∥Ez − Eana

z

∥∥∥∥Eana
z

∥∥ (19)

where ‖ · ‖ denotes the L2 norm, and Ez and Eana
z represent

the electric field solved by the SIM and the analytical method,
respectively. The SIM only needs to compute the zeroth-order
and firstst-order special functions (Bessel functions and Han-
kel functions). In contrast, high-order special functions must
be evaluated in the analytical solution [29], which is usually
achieved by means of the recursion of n steps of nonlinear
operation starting from 0th-order and 1st-order functions with
n being the order of special functions. Therefore, only for
the computation of special functions, the time complexity of
the SIM is O(1), while it is O(n) for the analytical method.
When the cylinder has multiple layers, the total computation
cost of the SIM is O(M N log N) which has been analyzed
in Section II-D. However, it is O(nM) for the analytical
method since the field values of all N sampling points in
a single-layer interface can be solved simultaneously. For a
cylinder with a large electrical size, the order n must be
large enough to maintain the computation precision since the
evaluation accuracy of the Bessel function is lowered for large
arguments [30]. Although some optimized methods have been
given previously [29] to solve high-order Bessel functions,
it still has a high computation cost due to the n times iterations
with nonlinear operations. Therefore, the analytical method
and SIM almost have the same computational cost when the
electrical size of the multilayer cylinder is small. However,
the SIM outperforms the analytical method when the cylinder
has a large electrical size. Another alternative method to solve
the N independent matrix equations in the Fourier domain
derived from (12) is using the MoM proposed in [31] for
circular cylinders. When there is only one layer interface,
the MoM results in diagonal matrices. The computational cost
of MoM and the recursive solution by the SIM is almost
the same because both of them only involve direct arithmetic
operation. When the cylinder has multiple layers, the recursive
solution by the SIM retains the direct arithmetic operation.
However, the previous MoM needs matrix inversion because
it is not easy to derive the elements of the diagonal matrix
for the whole circumference of multiple layers. Consequently,
the SIM outperforms MoM if the cylinder has many layers.
The comparisons of analytical solutions and recursive solu-
tions of the SIM and MoM will be shown by the second and
third numerical examples in the following. All the simulations
are implemented in a personal computer with an Intel(R)
Core(TM) i5-8500 3.0 GHz CPU, 8.0-GB RAM memory.

Fig. 2. EM scattering by a four-layer circular concentric magnetodielectric
cylinder with the outermost radius of 500λ0 embedded in air. The fields
Ez and Esct

z are computed in the circumference r1 = 500 m. (a) Relative
errors of Ez solved by the SIM with and without the singularity subtraction.
(b) Magnitude of the electric field Ez . (c) Real parts and imaginary parts of
Ez . (d) Magnitude of the scattered field Esct

z . (e) Real parts and imaginary
parts of Esct

z . (f) Bistatic RCS by the SIM and the analytical method.

A. Electrically Large Four-Layer Circular Cylinder

The large circular cylinder has four layers with the consti-
tutive parameters (εr , μr ) from outside to inside being (1,1),
(4,2), (6,3), and (9,4). The radii from outside to inside are
r1 = 500 m, r2 = 200 m, and r3 = 100 m. The wavelength in
the background medium air λ0 is 1 m. We test the proposed
method with different discretization schemes. The SD changes
from 1 to 10 PPW, and the relative errors of Ez at the outer-
most circumference r1 = 500 m are shown in Fig. 2(a). Here,
the SD is calculated as the global minimum SD according
to the local wavelengths. Clearly, the relative error decreases
with the increase in SD. Compared with the results without
singularity subtractions, the solved Ez is more precise when
the singularity of Green’s function is subtracted analytically.
One should note that the relative error with the singularity
subtraction is less than 1×10−10 when SD�3 PPW. This is the
merit of the SIM [11]. Fig. 2(b) and (c) show the comparisons
of the magnitude, real parts, and imaginary parts of the total
field Ez in the circumference r1 = 500 m when SD = 5 PPW,
and the relative error is 5.5686 × 10−11. However, the SIM
only uses the zeroth and first order Hankel functions, while
the order of the Hankel function in the analytical method
reaches 88920 to maintain the low computation error in the
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Fig. 3. Effects of sampling number N in a circumference and operating
frequencies on the relative error of Ez . (a) Relative error of Ez decreases
as the discrete point number N in the circumference increases. (b) Relative
errors of Ez increase as the operating frequencies increase.

order of 10−11. Both the real parts and imaginary parts match
well between the SIM and the analytical solutions. Fig. 2(d)
and (e) show the comparisons of the scattered field E sct

z in
the circumference r1 = 500 m, and they also match well
between the SIM and the analytical solutions. Fig. 2(f) shows
the comparison of 2-D radar cross section (RCS) solved by
the SIM and the analytical method when SD = 5 PPW and
the relative error is 8.0365 × 10−11. We can see that the RCS
values match well in the whole circumference.

Fig. 3 shows the relative error of the electric field Ez

obtained by the SIM when different numbers of discrete points
in a circumference and different frequencies are adopted.
Fig. 3(a) shows the relative error decreases with the increase
in the number of discrete points N in the circumference.
When N = 3406, SD = 2.05 PPW, and the relative error
becomes less than 10−10. Fig. 3(b) shows the relative error
versus the operating frequency. We can see that the relative
error increases when the frequency increases for a fixed SD in
the circumference. However, as long as the SD is larger than
2.05 PPW, the relative error is less than 10−10.

B. Electrically Small Four-Layer Circular Cylinder

In this case, we simulate a four-layer concentric cylinder
which has been used for the design of conformal microstrip
antennas and arrays [32], [33]. We adopt the same model
size and frequency used in [33]. The most inner cylinder
is PEC, and other constitutive parameters (εr , μr ) from out-
side to inside are (1,1), (3.8,1), and (2.5,1). The radii from
outside to inside are r1 = 0.053 m, r2 = 0.052 m, and
r3 = 0.051 m. The thickness of two middle layers is 0.001 m
which is much less than the wavelength λ0 = 0.0441 m
of the incident field from the outermost layer. As shown
in Fig. 4(a), the SIM shows good computational performance
for the thin layers with respect to the wavelength when the
singularity subtraction is adopted. Indeed, the approach with
singularity subtraction has an exponential convergence so that
its error decreases exponentially with the increase in the SD.
Specifically, it requires only about 3 PPW to converge to an
error of 5.6845 × 10−12. In contrast, the approach without
singularity subtraction requires 10 PPW to converge to an
error of 3.4485 × 10−7. The singularity subtraction technique
significantly improves the convergence speed. Fig. 4(b) shows
the comparison of the scattered field E sct

z between the SIM
results and the analytical solutions in the outermost layer

Fig. 4. EM scattering by a four-layer circular concentric magnetodielectric
cylinder with the outermost radius of 1.2018λ0 embedded in air. The fields
Ez and Esct

z are computed in the circumference r1 = 0.053 m. (a) Relative
errors of Ez solved by the SIM with and without the singularity subtraction.
(b) Magnitude of the scattered field Esct

z . (c) Real parts and imaginary parts
of Ez . (d) Real parts and imaginary parts of Esct

z .

boundary r1 when SD = 3 PPW in the background air. The
relative error of E sct is 1.8075 × 10−12. Fig. 4(c) and (d)
show the comparisons of the real parts and imaginary parts
of the total field Ez and the scattered field E sct

z . We can
see that both the real parts and imaginary parts match well
between the SIM and the analytical solutions. When the SD
is 3 PPW, the number of discrete points on the circumference
is N = 2182. The CPU time is 0.17188 s by the SIM and
0.18750 s by the analytic solutions. When we use MoM in the
Fourier domain [31], [34], the CPU time is 0.28125 s. We can
see that when the cylinder is electrically small and only has
four layers, the SIM and the analytical method almost have
the same computational cost. The MoM is a little slower.

C. Electrically Large 20-Layer Circular Cylinder

In this case, we increase the layer number to test the
proposed method. Meanwhile, the dielectric parameters of
some layers are also increased to verify the adaptability
of the proposed SIM. Large permittivity and permeability
values are sometimes seen in artificial EM metamaterials [35].
The circular cylinder has 20 layers. From outside to inside,
the dielectric parameters (εr , μr ) are (1,1), (3,2), (5,3), (7,4),
(8,5), (9,6), (10,7), (12,8), (14,9), (16,10), (17,11), (19,12),
(21,13), (23,14), (25,15), (26,16), (27,17), (28,18), (29,19),
and (30,20). The radii from outside to inside are 500, 480, 450,
420, 400, 380, 350, 320, 300, 280, 250, 220, 200, 180, 160,
150, 140, 120, and 100 m. The wavelength in the background
medium air λ0 is 1 m. Therefore, this is an electrically
large scatterer similar to the four-layer one in the first case.
As shown in Fig. 5(a), the SIM also shows good computational
performance for this 20-layer cylinder scattering when the
singularity subtraction is adopted. The relative error decreases
to less than 1 × 10−9 when the SD is larger than 3 PPW.
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Fig. 5. EM scattering by a 20-layer circular concentric magnetodielectric
cylinder with the outermost radius of 500λ0 embedded in air. The fields Ez and
Esct

z are computed in the circumference r1 = 500 m. (a) Relative errors of Ez
solved by the SIM with and without the singularity subtraction. (b) Magnitude
of the electric field Ez . (c) Magnitude of the scattered field Esct

z . (d) Bistatic
RCS by the SIM and the analytical method.

Fig. 5(b) and (c) show the comparisons of total field Ez

and the scattered field E sct
z between the SIM results and the

analytical solutions in the outermost layer boundary r1 when
SD = 5 PPW in the background air. The relative error of Ez is
2.4286×10−9 and 1.9637×10−9 for E sct. Fig. 5(d) shows the
RCS comparison, and the relative error is only 5.7018×10−9.
Compared with the first case, the analytical method needs
the order of 240746 for the Hankel function to achieve the
same accuracy while the SIM still uses the first-order Hankel
function. The relative error increases around one order for
the same SD. One possible reason for this difference is that
the analytical solution has recursions of high-order Hankel
functions between two adjacent layer boundaries, and more
layers may cause extra computation errors. The CPU time
is 34.9 s by the SIM, 68.3 s by the analytic solutions, and
70.8 s by MoM. Obviously, for an electrically large cylinder
with 20 layers, the SIM outperforms the analytical method and
MoM for the computational cost.

D. Electrically Small 20-Layer Circular Cylinder

In this case, we show the field distribution at each inter-
face layer to verify that the method is accurate for near-
field calculations. We use the FEM simulation results from
COMSOL Multiphysics as the reference. In order to save
the COMSOL simulation time and memory, we decrease the
20-layer concentric cylinder radii. From outside to inside,
the radii are 22, 21, 20, 18, 16, 15, 14, 13, 12, 11, 10, 9, 8,
7, 6, 5, 4, 3, and 2 m. Also, the dielectric parameters (εr , μr )
are (1,1), (1.5,0.8), (2,0.6), (2.4,0.5), (3,0.4), (1,1), (0.8,1.5),
(0.6,2), (0.4,3), (0.3,4), (0.4,3), (0.6,2), (1,1), (3,0.4), (4,0.3),
(3,0.4), (2,0.6), (1,1), (0.6,2), and (0.4,3). The wavelength λ0

is also 1 m. We pick the profiles at the azimuth angle θ = 60◦
and 150◦ to compare. In order to increase the number of points

Fig. 6. EM scattering by a 20-layer circular concentric magnetodielectric
cylinder with the outermost radius of 22λ0 embedded in air. Magnitudes of Ez
and Esct in each interface layer by two methods are compared. (a) Magnitude
of Ez when the azimuth angle is 60◦ . (b) Magnitude of Esct when the
azimuth angle is 60◦ . (c) Magnitude of Ez when the azimuth angle is 150◦ .
(d) Magnitude of Esct when the azimuth angle is 150◦ .

to compare the radial fields, we insert one fictitious interface
layer between two true interfaces, and thus, 18 interfaces
are added totally. The medium parameters in both sides of
the fictitious interface are the same as the original domain.
Fig. 6(a) and (b) show the comparisons of the magnitude of
the total fields Ez and the scattered fields E sct

z at 37 points
when the azimuth angle is 60◦ between the SIM solutions and
FEM simulations. Fig. 6(c) and (d) show the comparisons of
the magnitude of the total fields Ez and the scattered fields
E sct

z at these points when the azimuth angle is 150◦ between
the SIM solutions and FEM simulations. We can see that the
results from our SIM solutions match the FEM simulations
well for all cases.

E. Five-Layer Invisibility Cloaking Cylinder

The idea of invisibility cloak was first proposed by
Pendry et al. [36] and has become a hot topic in recent
years. The ideal method is to use artificial composite mate-
rials to control or redirect the EM waves in the microwave
frequency range [37], [38]. However, such metamaterials with
extreme physical properties are not easy to realize in engi-
neering. Therefore, the equivalent medium theory by replac-
ing the inhomogeneous anisotropic materials with a more
easily realized homogeneous isotropic cylindrically layered
structure was developed [39], [40] and realized in laboratory
experiments [41], [42].

In this case, we use the SIM to calculate the EM field
surrounding a five-layer concentric cylindrical cloak. It is
composed of layered isotropic magnetodielectric materials,
and therefore, the SIM based on SIEs is competent for the
solution. From outside to inside, the dielectric parameters
(εr , μr ) of the cloak are (1,0.09), (1,7.262), (1,0.09), (1,7.262),
and (1,0.09). The wavelength λ0 in the background medium air
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TABLE I

RELATIONSHIPS AMONG THE NUMBER OF BOUNDARY LAYERS AND KEY VARIABLES, NUMBER OF EQUATION SYSTEMS, ETC., TO BE SOLVED

Fig. 7. EM scattering patterns for the invisibility cloak and the bare conduct-
ing cylinder. The electric field distribution when the cloak is (a) present and
(b) absent. Magnitudes of (c) Ez and (d) Esct

z in the circumference r = 10.5λ0
for the layered cloak. (e) Magnitudes of the scattered field Esct

z of the bare
conductor, layered cloak, and layered media by the SIM and the analytical
method. (f) SW of the bare conductor and layered cloak by the SIM and the
analytical method evaluated for r = 10.5λ0.

is 1 m. Because the widest range of the inner or outer radius of
the cloak with a fixed medium is limited to (2/3)λ0 to 2λ0 to
ensure the invisibility performance [40], we choose the radii
of 1.5, 1.0264, 1.0117, 0.8667, 0.8407, and 0.7567 m from
outside to inside. Also, a conducting cylinder is enclosed at
the center. Fig. 7(a) and (b) show the electric field distribution
with and without the five-layer cloak. Between the black and
white lines are layered cloak media, and in Fig. 7(b), they are
replaced with air. It clearly demonstrates that when the layered
cloak is added, EM waves still propagates in accordance
with the incident waveform and direction after bypassing the
cloak, and the conducting cylinder is completely invisible.

Fig. 7(c) and (d) show the comparisons of the magnitudes
of the total field Ez and the scattered field E sct

z computed
by the SIM and the analytical method in the circumference
r = 10.5 m when SD = 3 PPW, and the relative error is
1.7786×10−5 and 9.4828×10−4, respectively. Compared with
the last two cases, the electrical size of the cylinder is smaller
and the layers are less in this case, and therefore, the analytical
method only needs 4192nd-order Hankel functions. Fig. 7(e)
shows an intuitive comparison of three scattering phenomena
involving the bare conducting cylinder, layered media without
the inlaying object, and the layered cloak with the inlaying
object. It is shown that when the magnetodielectric parameters
of the annular cloak are properly selected, the scattering
patterns of the layered cloak with and without the inlaying
conductor exactly coincide, while the scattering pattern of
the bare conductor has the obvious largest field magnitude.
Fig. 7(f) shows the SW for the bare conductor and the layered
cloak solved by the SIM and analytically, respectively. The
cloak achieves an average reduction of about 10 dB for the
SW in the whole circumference. We can see that the proposed
the SIM based on SIEs is also capable of solving wavefield
distribution for an invisibility cloak accurately.

F. Cylinder With Arbitrary Number of Layers

We generalize the magnetodielectric cylinder with arbitrary
number of layers. The SIEs are formulated similar as the
equation system (3). Some important parameters of the SIEs
and their discretized forms are listed in Table I.

IV. CONCLUSION

We have developed the SIM for EM scattering by multilayer
magnetodielectric cylinders with an arbitrary number of layers
and validated its feasibility by several numerical examples
including both the ordinary multilayer cylinders with differ-
ent electrical sizes and the invisibility cloak cylinder. The
high computation accuracy of the method with singularity
subtraction is verified by the comparisons with analytical
solutions and finite-element simulations. More than four orders
of magnitude in accuracy improvement can be achieved with
an SD less than three PPW. Instead of solving the MoM
matrix iteratively, we solve the SIM final matrix equation in
the Fourier domain through the convolution theorem by FFT to
compute the convolution between Green’s function and current
source, thus saving computation time significantly. The recur-
sive method is proposed to expedite the implementation of the
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direct SIM so that its CPU complexity is only O(M N log N),
and its memory complexity is only O(M N). Compared with
the analytical method, the proposed numerical method can
achieve almost the same accuracy but avoid using the high-
order Bessel and Hankel functions.

The future work will focus on two aspects. One is to extend
the present method to account for multilayer dielectric cylin-
ders with elliptical or even arbitrarily shaped cross sections.
When the cross section of the cylinder is elliptical, the SIEs,
Green’s functions, and the recursive method mentioned in
Section II are still applicable. However, after discretization,
the arc length of each segment in the circumference is not the
same. Therefore, nonuniform FFT must be used. When the
cross section has an arbitrary shape, the boundary lines may
be not smooth or irregular. The multilayer irregular surfaces
can be transformed into multilayer circular smooth surfaces
by using the quasi-conformal mapping technique with the
mapping function expressed in terms of the solution of a
Riemann-Hilbert problem which can be uniquely solved [43].
Then the SIM proposed in this article can be adopted to
solve the scattering problems in the transformed domain.
Another possible future work is to combine the SIM with
other numerical methods such as spectral element method [44]
to solve the EM scattering problem for a multilayer cylinder
filled with inhomogeneous media. However, these will be left
as the future work.

APPENDIX A
SUPPLEMENT TO THE RECURSION PROCESS

The relationship between adjacent electric fields for yγ can
be expressed as⎧⎪⎨

⎪⎩
z1(0, Ez,1, Ez,2) = 0

yγ (Ez,γ , Ez,γ+1) = 0, 1 < γ < M

zM(Ez,M−1, Ez,M , 0) = 0.

(20)

In order to get Ez,γ , we recursively solve it from z1 to yγ

(or alternatively from zM to yγ ). From (17) we can express
all known interface fields in terms of Ez,1 as

Ez,2 = 1

c1
(e1 − f1Ez,1), e1 = d1, f1 = b1 (21)

Ez,3 = 1

c2
(e2 − f2Ez,1), e2 = d2 − b2e1

c1
, f2 = a2 − b2 f1

c1
(22)

Ez,4 = 1

c3
(e3 − f3Ez,1), e3 = d3 − a3e1

c1
− b3e2

c2
,

f3 = −a3 f1

c1
− b3 f2

c2
(23)

In general, for γ = 3, · · · , M − 1, we have

Ez,γ+1 = 1

cγ
(eγ − fγ Ez,1), eγ = dγ − aγ eγ−2

cγ−2
− bγ eγ−1

cγ−1
,

fγ = −aγ fγ−2

cγ−2
− bγ fγ−1

cγ−1
(24)

Thus, for γ = M − 2, from (24) we have

Ez,M−1 = 1

cM−2
(eM−2 − fM−2Ez,1). (25)

Similarly, for γ = M − 1, from (24) we have

Ez,M = 1

cM−1
(eM−1 − fM−1Ez,1). (26)

Combining (25) and (26) into (17) for γ = M and noting
cM = 0, we have

aM

cM−2
(eM−2 − fM−2Ez,1) + bM

cM−1
(eM−1 − fM−1Ez,1) = dM

(27)

which gives the solution

Ez,1 =
aM eM−2

cM−2
+ bM eM−1

cM−1
− dM

aM fM−2

cM−2
+ bM fM−1

cM−1

(28)

After Ez,1 is obtained by (28), Ez,γ+1 for all γ = 1, · · · ,
M − 1 can be obtained from (21)–(24). The corresponding
interface current densities are then obtained from (15a)–(15c).
This completes the recursion.
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